将函数f(x)=14x^2展开成x的幂级数并指出展开式成立的区间
创始人
2025-03-07 03:38:26
将函数f(x)=14x^2展开成x的幂级数并指出展开式成立的区间
这道题这有两个可能:
可能性之一:抄错题,或者出错题;
可能性之二:题目没有错,只是教师用来测试学生对幂级数的最最基本的理解。

这道题的答案是:
14x²,收敛区间(-∞, +∞)。

解释:
1、任何代数式的多项式,只要已经用二项式方法展开后,
它们本身就已经是幂级数 = power series;
也就是说,它们已经是麦克劳林级数 = Mclaurin's series。

例如:
56x⁴¹ + 78x³² + 89x²¹ + 90x⁴ - 91x³ - 92x² + 93x + 94
这样的代数多项式 = algebraic polynomial,本身就是麦克劳林幂级数。
无需计算,无需多此一举去计算,它就是幂级数的最后答案。

56(x-1)⁴¹ + 78(x-1)³² + 89(x-1)²¹ + 90(x-1)⁴ - 91(x-1)³ - 92(x-1)² + 93(x-1) + 94
这样的代数多项式,本身就是泰勒级数。
若想得到麦克劳林级数,则必须展开。若想得到泰勒级数,就不必展开。

但是,
A、国内的教学会刻意将麦克劳林级数跟泰勒级数混为一谈;
B、按照国内教师的搅局解释,他们又不愿用他们的搅局逻辑将
麦克劳林级数、泰勒级数、洛朗级数整合为一体!
(在整个中国微积分的教学中,充满太多搅局谬论,数不胜数)

2、如果按照麦克劳林幂级数的定义,本题的最后结果依然是:

14x²,收敛区间(-∞, +∞)。

相关内容

热门资讯

我看2025 | 管清友:我们... 坐看国际风云变幻,守住风险底线,寻找更好投资机会。 记者 | L 编辑 | 何驰 题图 | unsp...
全民AI短剧时代来了!商汤Se... 智东西 作者 | 程茜 编辑 | 漠影 全民低成本自制爽剧的时代真来了? 短剧行业正迎来爆发式增长,...
九洲药业:已完成AI专业团队及... 有投资者在互动平台向九洲药业提问:“Ai在医药行业的应用正在迅速发展,请问公司在Ai应用方面有什么成...
视觉·昌吉|新增雪道+AI头盔... 昌吉日报讯(全媒体记者 陶维明摄影报道)12月14日,众多滑雪爱好者在昌吉市努尔加滑雪场雪道上飞驰,...
BBVA全面引入ChatGPT... AIPress.com.cn报道 12月15日,西班牙银行集团BBVA宣布与OpenAI扩大合作,双...