当公司提出“无论你是什么岗位,都要加强对AI的使用”的时候,个人应该怎么应对?
当我们在给不同的公司做AI项目咨询的时候,几乎每个公司的主管或HR都会问同样的问题:现在AI的发展这么快,我要怎么把非产研的同学们也都培养一下,大家能更好地使用AI,提升工作效率?
由于这个问题提出频繁,也促使我们去思考:在AI时代,当公司提出“无论你是什么岗位,都要加强对AI的使用”的时候,个人应该怎么应对?有哪些必备技能和认知是需要补齐的。基于此,我们做了一些调研,在此和感兴趣的朋友做一个分享。
一、公司的需求是什么?
当公司谈到“我们希望员工AI能力能有所提升时”,背后的潜在诉求是什么?掌握AI的技术原理?了解AI技术的前沿发展?根据我们和公司主管或HR的交流,其实都不是。
公司的本质的需求还是“提质增效”。
引用一位高管的原话:“我希望提升员工的AI敏锐度,这样工作可以完成得更快、交付质量更高。”所以,AI的理论、技术掌握并不是重点,公司更期待的是“人+AI → 工作产出”的效率链。
二、产出导向的“AI敏锐度”
那么,如何能让这个问题得以解决?我们查阅了相关的研究,发现国内外的主流观点可以总结为以下这个“三层次”。
第一层:对AI的正确认知
正如吴恩达在AI for everyone里所说的,AI和人类目前在职场上其实并不是“替代”的关系。因为人能完成的是“Job”,而AI能处理的只是“Task”,所以与其说是AI会替代人,更不如说是互补和协作的关系。
另外,发表在《Science》杂志上的研究文章Experimental evidence on the productivity effects of generative artificial intelligence也提到,目前LLM能处理的工作有它的边界,并不是所有的工作任务都擅长。
这篇文章将工作任务分为两类:一类是在AI能力范围内的任务,另一类是在AI能力范围之外但对于人类可能相对容易完成的任务。
这两类任务的难度相近,但基于任务属性的不同,一类在AI能力范围内,另一类对于AI来说较为复杂且具有挑战性。然后研究发现,AI擅长的任务是创造性任务。
例如,在某个尚未受到足够关注的特定市场或运动领域提出10个创意点子,此类任务是AI擅长的,因为它涉及到创造力的工作。然而,AI不擅长的任务是基于详实数据和访谈给出一个准确答案,即需要根据这些数据指向一个正确答案的任务。
因此,从职场人的角度,我们需要对AI的“边界”和使用条件有清晰的认知——知道什么样的工作是适合AI来做的,什么样的工作还是得自己上;并且能判断和选择使用合适的AI工具来完成对应的工作。
第二层:人机协作技能
有了清晰的认知,那么在真正的人机协作中,个人确实需要一些实操技巧来让LLM能更好地产出结果。这部分的能力主要以“提问为主”,即:员工知道在什么样的工作场景中用合适的方法向LLM获得最佳的结果。这部分通常分为三类:
关于人机协作的研究中,还有一个很有趣的发现,就是关于“能力的迁移和重塑”。研究者发现,由于有了AI,过往我们在职场中看中的一些“技能”,如:写作和表达、excel能力等,并不是那么重要了,因为有了AI这个工具,人和人在技能上的差距在逐步变小。反而是在这些技能之下更“深层”的职场软实力,会变得更重要。比如:
本文由 @AI 实践干货 原创发布于人人都是产品经理。未经作者许可,禁止转载
题图来自 Unsplash,基于CC0协议
该文观点仅代表作者本人,人人都是产品经理平台仅提供信息存储空间服务
上一篇:因凡蒂诺:中国可以办世界杯